Factored Probabilistic Belief Tracking
نویسندگان
چکیده
The problem of belief tracking in the presence of stochastic actions and observations is pervasive and yet computationally intractable. In this work we show however that probabilistic beliefs can be maintained in factored form exactly and efficiently across a number of causally closed beams, when the state variables that appear in more than one beam obey a form of backward determinism. Since computing marginals from the factors is still computationally intractable in general, and variables appearing in several beams are not always backward-deterministic, the basic formulation is extended with two approximations: forms of belief propagation for computing marginals from factors, and sampling of non-backward-deterministic variables for making such variables backwarddeterministic given their sampled history. Unlike, Rao-Blackwellized particle-filtering, the sampling is not used for making inference tractable but for making the factorization sound. The resulting algorithm involves sampling and belief propagation or just one of them as determined by the structure of the model.
منابع مشابه
The Belief Roadmap: Efficient Planning in Linear POMDPs by Factoring the Covariance
In this paper we address the problem of trajectory planning with imperfect state information. In many real-world domains, the position of a mobile agent cannot be known perfectly; instead, the agent maintains a probabilistic belief about its position. Planning in these domains requires computing the best trajectory through the space of possible beliefs. We show that planning in belief space can...
متن کاملStructured Possibilistic Planning Using Decision Diagrams
Qualitative Possibilistic Mixed-Observable MDPs (πMOMDPs), generalizing π-MDPs and π-POMDPs, are well-suited models to planning under uncertainty with mixed-observability when transition, observation and reward functions are not precisely known and can be qualitatively described. Functions defining the model as well as intermediate calculations are valued in a finite possibilistic scale L, whic...
متن کاملPhD Dissertation: Propositional Reasoning that Tracks Probabilistic Reasoning
Bayesians model one’s doxastic state by subjective probabilities. But in traditional epistemology, in logic-based artificial intelligence, and in everyday life, one’s doxastic state is usually expressed in a qualitative, binary way: either one accepts (believes) a proposition or one does not. What is the relationship between qualitative and probabilistic belief? I show that, besides the familia...
متن کاملBelief Tracking for Planning with Sensing: Width, Complexity and Approximations
We consider the problem of belief tracking in a planning setting where states are valuations over a set of variables that are partially observable, and beliefs stand for the sets of states that are possible. While the problem is intractable in the worst case, it has been recently shown that in deterministic conformant and contingent problems, belief tracking is exponential in a width parameter ...
متن کاملAccurate Belief State Update for Probabilistic Constraint Automata
As autonomous spacecraft and other robotic systems grow increasingly complex, there is a pressing need for capabilities that more accurately monitor and diagnose system state while maintaining reactivity. Mode estimation addresses this problem by reasoning over declarative models of the physical plant, represented as a factored variant of Hidden Markov Models (HMMs), called Probabilistic Concur...
متن کامل